Activation of protein kinase (PK) C has been considered cancer-promoting based on early data showing that phorbol esters could induce oncogenes is through the activation of so called classic and novel PKC isozymes. Although many human cancers exhibit increased levels of specific PKC isozymes there are conflicting data which show that specific isozymes can act as either promoters or suppressors of oncogenesis depending on tissue context. In human prostate cancer (CaP), PKC, levels increase with malignancy whereas PKC* levels are constant, yet only the overexpression of PKC, is sufficient to induce prostatic intraepithelial neoplasia (PIN). Therefore, characterization of the pro-oncogenic PKC-induced signaling pathways and mediators is paramount to our overall understanding of CaP disease progression. Our lab identified a novel PKC substrate, SSeCKS/Gravin/AKAP12 ("SSeCKS") that is also a scaffold for both PKC and PKA, capable of attenuating PKC kinase activity and altering its cellular compartmentalization, while regulating PKA through compartmentalization only. SSeCKS displays many of the hallmarks of a tumor suppressor in prostate cancer: it is severely downregulated in human CaP cell lines and tissues with Gleason sums =6, SSeCKS reexpression suppresses macroscopic CaP metastasis growth by inhibiting VEGF-induced neovascularization, genetic knockout (KO) in mice induces prostatic hyperplasia and focal dysplasia with evidence of epithelial cell senescence, and KO mouse fibroblasts (MEF) display premature senescence correlating with polyploidy and binucleation. Premature senescence seems Rb-dependent because it can be suppressed by HPV-16E7orpRb-siRNA but not byHPV-16 E6 or p53-siRNA. In keeping with SSeCKS' scaffolding function for PKC, KO-MEF have >2-fold higher total PKC activity than WT-MEF, with a >3-fold increase in PKC* activity. Based on preliminary data from expression microarray and biochemical experiments, we hypothesize the loss of SSeCKS induces hyperactive PKC*/,,which in turn induce i) cytokinesis defects through the activation of RhoA and LIMK, and through the suppression of the mitotic exit network kinase, WARTS, and ii) Rb-dependent senescence by increasing reactive oxygen species (ROS) mediators such as p47phox. We believe SSeCKS controls cytokinesis directly because a pool of SSeCKS enriches in the cleavage furrow during telophase where PKC* and , are known to normally regulate abscission by coordinating the timing of RhoA and LIMK activation, and thus, formation and contraction of the actomyosin abscission ring. Our overall aim is to use genetic, biochemical, and fluorescence and time-lapse microscopy techniques to dissect this novel SSeCKS-PKC pathway in WT vs. KO MEF and murine prostate epithelial cells (PrEC), and in human PrEC vs. CaP cell lines, using readouts of senescence/ polyploidy/ binucleation and cytokinesis completion (Aim 1), podosome formation and tumor invasiveness (Aim 2), and CaP formation, invasiveness and metastatic potential in transgenic mouse models (Aim 3). The experiments proposed are envisioned to elucidate the mechanism and pathways controlled by the SSeCKS/PKC scaffold complex and how dysregulation by the loss of SSeCKS contributes to CaP progression.