The overall goal of this academic-industrial partnership between researchers at Johns Hopkins University and Philips health care/Philips Research is to develop and optimize the novel amide proton transfer (APT) imaging technique for efficient and reliable detection of malignant brain tumors and assessment of treatment response. APT imaging can provide endogenous contrast related to mobile protein content in tissue. Preclinical studies and clinical data suggest that APT imaging may provide unique information about the presence and grade of brain tumors, as revealed by MRI-guided proteomics and in vivo MR spectroscopy. Notably, we recently demonstrated in animal models that the APT-MRI signal is a unique imaging biomarker to distinguish between radiation necrosis and active tumor tissue. Similar to other MRI techniques, the ultimate goal for APT imaging is the standardized use in a clinical setting. However, current APT imaging protocols are far from being optimized. A main reason is that the APT experimental parameters are often limited by scanner hardware constraints, particularly with respect to amplifier duty-cycle and specific absorption rate requirements. In addition to pulse sequence parameter differences, leading to inconsistent effect sizes, data processing strategies vary and may affect the reproducibility of results between hospitals. Therefore, there is an urgent need for industry and academia to work together to develop this emerging technology into a clinically viable, easy-to-use, and reproducible approach. To accomplish this, we (researchers at JHU and Philips) agreed to establish a cooperation to achieve an accelerated APT translation. Together, we formulated the following two specific aims: (1) Optimize and standardize APT imaging technology on 3T human MRI systems; and (2) Test the methodologies developed in Aim 1 on patients with brain tumors. APT imaging has the potential to introduce an entirely new molecular MRI methodology into the clinic that can detect endogenous cellular protein signals in biological tissue non-invasively. Thi research will provide the standard optimized approaches required to translate this new technology into the clinic.