The overall objective of the proposed work is to understand how the Dmrt1 gene controls development and function of the testis. The testis has two essential functions: production of sperm, the cells that serve as vehicles for the immortality of male germ line DNA; and production of hormones that direct other parts of the body to develop in a male-specific manner. Dmrt1 belongs to family of conserved transcriptional regulators and controls multiple critical processes in the mammalian testis. This work has direct human health relevance: loss of DMRT1 in humans is associated with male-to-female sex reversal, disorders of sexual differentiation (DSD), infertility, and testicular germ cell tumors (TGCTs). In mice Dmrt1 controls germ cell pluripotency in the fetal gonad and controls the mitosis/meiosis decision in adults. A new discovery is that testis determination must be actively maintained postnatally by Dmrt1 and that Dmrt1 mutant testes undergo massive postnatal reprogramming to become ovary-like organs. This proposal has three aims focused on deepening our understanding of how DMRT1 controls key processes in the testis. Aim 1 asks how DMRT1 prevents transdifferentiation in the postnatal testis. This is a newly discovered and unstudied biological process. The proposed experiments use conditional gene targeting approaches to ask whether DMRT1 prevents reactivation of the fetal sex determination network postnatally, identify new regulators of postnatal sex maintenance, and use ChIP-seq to identify genes that are bound by DMRT1 in the mouse and human testis. Aim 2 tests the hypothesis that DMRT1 is critical for the transition from spermatogonia stem cell to committed progenitor cell, using precisely controlled loss- and gain-of-function approaches. Aim 3 will determine how DMRT1 is inactivated as spermatogonia transition from mitosis to meiosis and will test the consequences when this fails to occur. The results of this study should aid in treatment of gonadal cancer and infertility, and will inform studies of cell fate reprogramming and design of novel male contraceptives.